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Abstract

Mutations in the family of neurexins (NRXNI1, NRXN2 and NRXN3) have been repeatedly identified in patients with autism
spectrum disorder (ASD) and schizophrenia (SCZ). However, it remains unclear how these DNA variants affect neurexin
functions and thereby predispose to these neurodevelopmental disorders. Understanding both the wild-type and pathologic
roles of these genes in the brain could help unveil biological mechanisms underlying mental disorders. In this regard,
numerous studies have focused on generating relevant loss-of-function (LOF) mammalian models. Although this has
increased our knowledge about their normal functions, the potential pathologic role(s) of these human variants remains
elusive. Indeed, after reviewing the literature, it seems apparent that a traditional LOF-genetic approach based on complete
LOF might not be sufficient to unveil the role of these human mutations. First, these genes present a very complex
transcriptome and total-LOF of all isoforms may not be the cause of toxicity in patients, particularly given evidence that
causative variants act through haploinsufficiency. Moreover, human DNA variants may not all lead to LOF but potentially to
intricate transcriptome changes that could also include the generation of aberrant isoforms acting as a gain-of-function
(GOF). Furthermore, their transcriptomic complexity most likely renders them prone to genetic compensation when one tries
to manipulate them using traditional site-directed mutagenesis approaches, and this could act differently from model to
model leading to heterogeneous and conflicting phenotypes. This review compiles the relevant literature on variants
identified in human studies and on the mouse models currently deployed, and offers suggestions for future research.

Introduction

Disorders affecting brain development and behaviour
(Neurodevelopmental Disorders) are highly heritable in
nature [1, 2] and often present co-morbid phenotypes [3].
Two such neurodevelopmental disorders are autism spec-
trum disorder (ASD) and schizophrenia (SCZ), the first
being diagnosed mostly in early childhood [4] and the latter
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detected usually in late adolescence/early adulthood,
although it may also occur, rarely, in middle childhood
[5, 6]. The last decades have witnessed considerable global
efforts to identify genetic risk factors [7, 8] using state-of-
the-art genotyping and sequencing techniques [9]. This has
led to the identification of numerous, significantly asso-
ciated single nucleotide polymorphisms (SNPs) [10] and
fewer rare but highly penetrant variants (copy number
variants (CNVs)) [11]. Interestingly, these studies have also
highlighted genes that appear to predispose to both dis-
orders. One prominent gene family that is identified in ASD
and in SCZ, is the neurexin (NRXN) family of synaptic
organisers. Because NRXNs are associated with ASD, SCZ
and other neurodevelopmental diseases, such as intellectual
disabilty [12, 13], it is important to study their function to
confirm their potential role in mental disorders and obtain
new insights into the biological mechanisms behind the
development, progress and severity of mental disorders.

In this review, we have compiled the mutations identified
to date in the family of NRXN genes in human patients with
ASD and SCZ, listed all published mouse models together
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with details of their genotype and phenotype, and discussed
the potential of future cellular and animal models to unveil
the pathogenicity of NRXNs in mental disorders.

Neurexin family

NRXNs are conserved presynaptic transmembrane proteins
predominantly functional at the cell surface of neurons and
fundamental for synaptic transmission [14, 15]. In mam-
mals, there are three NRXN genes (NRXNI, NRXN2 and
NRXN3) [16]. Each gene encodes for two major protein
isoforms, a longer a-NRXN and a shorter f-NRXN with a
common C terminus [17]. Both these isoforms are tran-
scribed from distinct promoters. The promoter for the larger
a-NRXN isoform located upstream of exon 1 generates a
protein containing: (i) a signal peptide at the N-terminal; (ii)
six laminin/neurexin/sex-hormone binding globulin (LNS)
domains; (iii) three epidermal growth factor (EGF) like
regions in the middle; (iv) a carbohydrate attachment
region; (v) a transmembrane domain and (vi) a short cyto-
plasmic region (Fig. 1). The promoter for the shorter S
NRXNs located downstream of exon 18 for NRXNI and
exon 17 for NRXN2 and NRXN3 generates a protein that
contains the same sequence as the a isoform beginning at
the sixth LNS domain and with no EGF-like repeats [18].
Extensive alternative splicing, a hallmark of these genes at
the six alternative splicing sites (SS1-6 in NRXN1/3 and
SS1-5 in NRXN2) in the « isoform, two of which are shared
by the f isoform, gives rise to thousands of isoforms
[15, 18, 19] (Fig. 1). These isoforms make this a very
complicated and complex gene to study as depicted by the
phenotypic diversity observed in both patients and mouse
models presented below.

Neurexin mutations in autism spectrum disorder

The original discovery of two rare missense mutations in
exon 1 of NRXNIp (p.S14L and p.T40S) after screening all
three f isoforms of 131 Caucasian and 61 African-American
patients with ASD and their absence in more than 500
controls provided a strong link between NRXNs and ASD
[20]. In a landmark study, the Autism Genome Project
Consortium examined 1181 families, each with at least two
family members with ASD, identified a ~300 Kb hemi-
zygous deletion in the coding region (2pl16.3:
50,430-50,785) of the a isoform of NRXNI in two siblings
[21]. Following this important result, Kim et al. [22] iden-
tified a disruption in intron 5 of the NRXNIa isoform in one
subject with ASD and a translocation ~750 Kb upstream of
the 5’ region of NRXNe in a second unrelated subject [22].
Guilmatre et al. [23] identified two deletions in unrelated
ASD patients in a cohort of 260 ASD patients and 236
controls. Both these deletions were in the first two exons of
NRXNIa. Zahir et al. reported a patient with developmental
delay, autistic features and an unusual facial appearance
who carried a ~320 Kb heterozygous mutation in the pro-
moter region and first five exons of the NRXNIa gene. With
the f isoform still intact, the author reported that a small
reduction in the NRXNIa protein is enough to generate an
ASD phenotype and suggested a possible gene-dose effect
[24]. Consistent with this evidence, Duong et al. [25] pos-
tulated a bi-allelic loss, identifying a 451 Kb deletion of the
first five exons affecting the promoter inherited from a
mother with sub-diagnostic autistic traits along with type 1
diabetes, and a point mutation in NRXN/ inherited from the
father with SCZ. This patient with the inherited compound
heterozygous mutation suffered from autism, mental
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Fig. 1 Domain organisation of a-neurexins and p-neurexins.
Schematics show six LNS (laminin/neurexin/sex hormones binding
protein domain) and three EGF (epidermal growth factor) domains in
the a isoform and one LNS domain in the f isoform. The red arrows
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mark the six alternative splice sites of NRXNI and NRXN3 (only five in
NRXN2) with two common in the f isoform, along with a highly
glycosylated region(¥), transmembrane region (TMR) and PDZ
domain binding motif at the C terminal end.
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retardation and epilepsy. The variable phenotype and family
history in the proband exemplifies a gene-dose effect
together with pleiotropy of this gene. These studies provide
evidence that both pathogenic CNVs and single point
mutations disrupting NRXNI have a deleterious effect.
Most of these studies have repeatedly identified NRXNI
deletions with a lesser focus on NRXN2 and NRXN3 genes.
However, a comprehensive study by Gauthier and collea-
gues [26] (cases: 379; controls 285) reported a novel trun-
cating mutation in exon 12 of NRXN2a (no effect on f) in
an autistic patient. Mutant NRXN2a is partially made but
non-functional at the cell surface. Modelling this mutation
in transfected COS cells revealed a failure of this protein
(lacking the LNS 6, transmembrane and cytoplasmic
domains) to anchor at the plasma membrane and induce
synapse formation. Mohrmann and colleagues [27]
observed a 0.57 Mb de novo deletion in the chromosomal
region spanning the entire NRXN2 gene to be associated
with the patient’s autistic traits and neurodevelopmental
delay. In addition, Boyle et al. 2015, identified a de novo
1.6 Mb deletion at the NRXN2 locus in a patient with
autistic behaviour and severe intellectual disability [28];
both authors hypothesised that these NRXN2 mutations
could be responsible for those traits. A Canadian study [29]
involving mutations in one or both isoforms of NRXN3
(three of four cases had deletions in both isoforms) sug-
gested the possible role of this NRXN in ASD. This study of
four unrelated pedigrees provided inconclusive evidence for
the mutation being linked to ASD as some of these muta-
tions were also identified in unaffected siblings suggesting
reduced penetrance. By contrast, a recent study by Yuan
et al. [30] provided the first co-segregation evidence from a
three generation Chinese family with an autistic boy car-
rying a 222 Kb deletion in exons 6-12 of the NRXN3a.
Thus, there is inconsistent evidence for the potential
pathogenic role of NRXN2 and NRXN3 genes in ASD.

Neurexin mutations in schizophrenia

The first study describing a role for NRXNI in SCZ came
from Kirov and colleagues [31], where they screened the
genome of 93 SCZ cases for CN'Vs and identified a 250 Kb
deletion in the 5’ end of NRXNI« in an affected sibling pair
and no deletion in 372 controls. A subsequent report iden-
tified a 115 Kb deletion at the 3’ end disrupting NRXNa
and p in an affected twin pair (2/233 cases; 0/268 controls)
[32]. In a cohort of 54 SCZ patients, one individual was
observed to carry a 389 Kb deletion in exon 1 of NRXNI«a
and, in a further cohort of 752 patients, four were observed
to carry other deletions in exons and introns of NRXNIa
[33]. Guilmatre et al. [23] screened 236 SCZ patients and
236 controls and found two deletions, one affecting exon
1-2 of NRXNIa and the second affecting both NRXNIa and

p. On a much larger scale, Rujescu et al. [34] examined
CNVs in 2977 European ancestry SCZ cases and 33,746
controls. They reported an excess of CNVs in NRXNI in
SCZ (cases: 0.47% controls: 0.15%) and focused on exon-
disrupting deletions or duplications concluding that the
identified CNVs must impact disease predisposition. In
total, they identified 12 deletions and 2 duplications present
in the NRXNI gene or in its promoter region; this study did
not identify any novel CNVs in NRXN2 or NRXN3. In 2011,
Gauthier et al. identified a de novo heterozygous frameshift
mutation in exon 22 of NRXNI, affecting the o and f iso-
form in a female with disorganised SCZ. The 4- nucleotide
insertion led to a premature stop codon, with a truncated
protein lacking the transmembrane region and cytoplasmic
tail [26]. Immunofluorescence assays and western blot
analysis on neuronal cell cultures confirmed intracellular
accumulation of a partial non-functional NRXNI protein
resulting in a failure to form synapses similar to a NRXN2a
study described earlier by the same authors. A landmark
2017 study by Marshall and colleagues [11] reported an
analysis of the largest-to-date SCZ cohort (21,094 cases;
20,227 controls). A gene-based association test identified
genome-wide significant association signals at 8 loci.
NRXNI attracted the third highest level of statistical sup-
port, was the only single-gene locus identified and was
observed to have one of the highest odds ratios (OR: 14.4;
cases: 35; controls: 3) of all reported loci.

This odds ratio is consistent with the odds ratio (OR
9.74: cases 67; controls 15) of a genome-wide CNV ana-
lysis of NRXNI deletions [35]. This analysis represented
samples from the United States [36-38], Japan [39], China
[40] and many European countries [32, 41-52] including
patients with childhood onset SCZ [53]. This reiterates the
strong association of NRXNI deletions and increased risk in
patients developing SCZ.

To date, there have been no studies associating NRXN2
with SCZ. The first study to report an association of NRXN3
with SCZ was in a Chinese Han population (1214 SCZ
cases; 1517 controls). Of the seven genotyped SNPs, the
three (rs7157669, rs724373 and rs7154021) observed to be
associated with SCZ were located in intron 1 and 2 of the
gene [54].

Neurexin KO/KI mouse models

The first Nrxn loss of function mouse models emerged in
2003, when Missler et al. [55] generated single, double and
triple Nrxnla/2a/3a KO mice by deleting the first exons of
a-Nrxns to determine the importance of aNrxn LOF. Mice
generated via this strategy were validated by immunoblot-
ting for the full length a-Nrxn protein with an antibody that
recognises the C-termini of all Nrxn proteins showing
varying levels of the a protein in single and double KOs and
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complete absence in the triple KOs. Variable survival rates
and viability of different combinations of double and triple
KO a-Nrxns compromised postnatal existence highlighting
the fact that a minimum of two intact a-Nrxns is essential for
survival. Mice with triple a-Nrxn KOs died due to difficulty
in breathing. Intriguingly, these mice had normal brain
morphology when born suggesting that a-Nrxn deficiency
had no effect on neuronal development. A closer look at
their synaptic function showed impairments in both excita-
tory and inhibitory neurotransmission in the brainstem,
partly due to the loss of presynaptic Ca’" influx [55, 56].
Behavioural analysis of Nrxnla homozygous KO mice on a
hybrid SV129/C57BL/6 background by Etherton and col-
leagues [57] found dramatic changes in motor learning
abilities and an increase in repetitive grooming, both classic
autistic behaviour domains [58], reduction in pre-pulse
inhibition common amongst SCZ patients [59] and an
impairment in nest building activities compared to their lit-
termate controls. Surprisingly, a number of tasks involving
social behaviours were normal, and because social interac-
tion impairment is a core ASD symptom the authors
declared a limited usage for this model. By contrast, Grayton
et al. [60] investigated the behavioural effects of Nrxnla KO
on mice with a different background (pure C57BL/6]J strain)
and observed that these mice exhibited reduced locomotor
activity with high levels of anxiety and aggression towards
adult conspecifics with no loss of spatial or working mem-
ory. Several other studies reported a range of behavioural
phenotypes using a combination of homozygous and het-
erozygous lines outlined in Table 1 [56, 61-66].

In mice, regardless of the continued expression of S
isoforms, double and triple KO of a-Nrxns invariably lead
to fatality suggesting that S-Nrxns do not partially com-
pensate for the loss of a-Nrxns and either have unique
functions dissimilar to a-Nrxns or are functionally redun-
dant. To respond to these questions, Anderson et al. gen-
erated conditional (cKO) and constitutive KO mice of all
three f-Nrxn genes and reported for the first time an asso-
ciation of f-Nrxns and endocannabinoid signalling [67].
Experiments described a new role of -Nrxn in controlling
tonic postsynaptic endocannabinoid signalling mediated by
2-arachidonoylglycerol, an endogenous agonist of CB,
receptor, suggesting that f-Nrxns performed unique non-
redundant functions. An approximate twofold decrease in
excitatory synaptic transmission measured by electro-
physiology experiments was surprising, given the low
expression of f-Nrxns throughout the brain depicted by
gRT-PCR analysis. The cKO mice were viable and fertile,
however, inducing f-Nrxn KO led to infertility and sig-
nificantly smaller mice. Loss of protein validation was
performed by immunoblotting for tagged - Nrxn specific
sequences using anti-Nrxn antibody (see Table 1 for
details).

SPRINGER NATURE

Inclusion (1) and exclusion () of a highly conserved 90
bp exon at alternative splice site 4 (SS4) determines NRXN
binding preference for its postsynaptic partners; for exam-
ple, SS4* only binds to cerebellins [68, 69] and SS4~ binds
to dystroglycans [70], CIRL/latrophilins [71] and LRRTMs
[72, 73]. The significance of this 4th canonical splice site
was revealed after qPCR analysis of all Nrxns revealed a
differential pattern of SS4 splicing in different regions of
the mouse brain. For example, the striatum, cerebellar
cortex, olfactory bulb, brainstem and spinal cord expressed
SS47" forms of all three Nrxns whereas other regions such as
the cortex and hippocampus expressed both SS4™ and SS4~
forms of Nrxnl and Nrxn2 while the SS4~ form of Nrxn3
was predominant [74]. A genetic knock-in (KI) approach
was then utilised to test the biological significance of Nrxn
alternative splicing at SS4. Mice with a conditional and
constitutively included SS4% exon (no longer subject to
alternative splicing) in Nrxn3 were generated. To validate
this model mouse neuronal cultures from newborn hippo-
campi (WT and KI) were transfected with lentivirus
(expressing active and inactive Cre). These produced sets of
WT, SS41 and SS4~ neurons validated by their respective
mRNA levels. Hence, the authors proposed to have gener-
ated mutants in which neurons would produce SS4~ var-
iants upon Cre-directed recombination. In a later study [75],
cKI mice for Nranl and Nrxn2 similar to Nrxn3 were made
with a constitutively included SS4 exon that is no longer
alternatively spliced but can be excised by Cre recombinase
and converted to SS4~ variants. Using these three lines
simultaneously, the data summarised in Table 1 revealed
that all three Nrxn SS4" variants had different effects on
NMDAR and AMPAR responses.

Aoto et al. [76] used homologous recombination to flank
exon 18 shared between Nrxn3a and f with loxP sites to
create cKO mice observing their phenotype in two separate
brain regions (hippocampus and olfactory bulb). Details of
model validation can be found in Table 1. Constitutively
active Nrxn3a/ff homozygous KO mice died at birth and
those that survived displayed a more severe phenotype than
the other Nrxn3 mice models [55, 74] for which the authors
seek to investigate the consequences of Nrxn3a/f ablation
on synaptic activity. By first examining cultured hippo-
campal neurons of Nrxn3a/ff homozygous KO mice, results
reported were an impairment in AMPAR mediated trans-
mission but not in NMDAR mediated excitatory or
GABAergic inhibitory responses. In the olfactory bulb,
Nrxn3a/p deficiency revealed that Nrxn3 is required for
presynaptic GABA release [76].

A triple Nrxnla/p, Nrxn2a/fp and Nrxn3a/ff (Nrxnl23)
cKO mouse [77] was generated to describe broader func-
tions of NRXNs by investigating synaptic activity in pre-
and postsynaptic neurons in absence of Nrxns. Using a
combination of qRT-PCR and western blot techniques, the



Neurexins in autism and schizophrenia—a review of patient mutations, mouse models and potential future...

‘uorar 1y redwresoddy
ur Arowow 1e9j remxa)uod SurdKjousyd
10y oy1oads mnoraeyaq Surzear] 1

-Surureay
[e100s pue AN[Iqeroos ur juduLreduy

Surwooid-jres |

Krowow [eneds ur ofueyo

ou PIM $IXAS 1oq ul KjRIxuy | “sofew
uey) uoneSnseAur [e100s/AN[IQRI0S

1 pakerdsip pue Surwoord swn

108u0] Juads 9d1Ur O VZUXAN JRWD]

‘uoniusooal [e100s
pue AN[IqeIO0s Ul S)IOYIPp—S T HH OZUXIN

1dd [eWlON ‘STHH
DJUXAN UL SOOUIDJJIP JUBOYIUSIS ON

Sururey
QoueproAe aAIssed pue [dd [BULION

-Suntordxe owm
SS9] PUE AINSO[OUD UI AUIT} DIOUI ‘DZBW
snjd pereaso jo wre uado ur owr sSA[
‘proy uado ur srxejowrSp—Ajorxuy |

*K1owaw [eroos *Aiqerdos parreduy
Krowow Suppom/feneds uo 10912 ON
uorssai33e ‘Krxuy |

A1Anoe 1010woo07 1

SINOTABYRQ [BID0S [BULION

(1dd) uoniqryut osind-oig 1
Surwoord ‘Surureay 10101 |

MO[q S[OPOW UI PasATeur INOIARYIY

‘Surfreusis prouIqeUUROOPUD JIUO)
ySnoxnyp pSuons ondeuds L1oreioxe Sunensoy

'sosdeuds A10)e)10x0 Je Xnpur | &) pasnpur
[enuajod uonoe ‘OSEO[AI JOPIWISURIOINSU
‘0Sdd ut pjojomy Aprewrxoiddy 1

‘suonau [epruresid 9/¢ 1oKe[ [BO1I0D
ur s)SJW pue s)SgW jo Louanbarg 1

“aseajal

o13oreweIn|3 pue suonounj Yy AN PRIy
*Kyisuop osdeuks pue sesdeuks Aroyqryur

ur o3ueyd ON "X9110009u osnowr ur sasdeuks
£1072110%9 1 9SBI[AI IonIwsuel snoduryuodg 1

‘uorssardxa
g1-ounpy Tedureooddry ur o3ueyo oN

sndweooddiy
pUE X2MI09 [ejuol) ur uorssardxa gy-ounpy 1

*Kysuop/roquinu dsdeuds
ur aSueyd ON “uoISSISuUENoIMaU K10je)oxy 1

‘suonoafoxd qinq A1o1oejjo ur ouepmn3d

uoxe Io uoneuoj asdeuks ur o3ueyo oN
‘qnq £10)9e)10 Ul [idoInau Jo uononpar plIA
‘uonoun( Ie[nosnwoInau

asnow Je dseafal Japnusuenomau paredwy
‘spouueyd +ze) 2dA1-7 ur a3ueyd oN ‘sfpuuLRyd
+zeD 2dK) O/d pue N JO UONEIE JANII[IS
-asdeus£s je sreunuio)

B0V VD JO Joquuny 1 Xnyur +ge)
ondeussaid Jo ssoT *osea[al IONIUSULIOINAU
paYoA? pue snoauejuods parredwy

‘sarpoqnue

(TunuId) O paAIdsuod Junosyep adoyde)
urxaImau-nue pue JiOg-nue sursn
surxamau-g pagde) jo sjojqounuuur

Aq 09 ut uonepiea urjoid jo sso]

‘Kpoqnue
VH Suisn uoneprea urdjord jo sso

07 SWOS 1N YNJYUW Fg Ou pamoys
ureiq 901 Wolj SISA[RUE JO[q UISYLON

*QUO UI punoj S[eRq

‘poreIouas Aferorowuo))

€ pue ZJuxipn jo

SWLIOJOST Y10q JO TUIULId)-D) YY) 0) Spulq
e Apoqnue ue Suisn Sumojqountuur
£q uoneprrea urejoxd jo sso

*9ZIS UI IO[[eWs pue
Q[IIQJUT AIOM OTW JUSIOYIP UIXAINAU ¢f

‘sadKyouayd
JUBINW PISIOARI/PANISAI QUIIKIAXOP
JO UONENSIUTWPY “AYI[BAY pue d[qRIA

‘sponuod Ayieay uey) JySrom Apoq ssof
9%GT e pooynpe 0] MoIS O ZUXIN

*Kep 151y oY) UO paIp pue
sonIewLIouqe Jurypeaiq pakerdsip ooru
O30 o[duy, yoom e 03 dn paataIns
A[uo do1wr O[O A[qNO( A[qera

QIOM QOTWI JUAIDYIP UIXINAU 0 J[FUIS

*(dg 1oy urunni33ewoy

pue g¢ pue d| 104 d:I1DH)

saouanbas oyoads ¢ ojur payasur
s3e) adoydy "sas gxof yim yduosuen
¢ 01 oy1oads uoxa is1y Sunyuey Aq O
QATIMINSUOD pue (OO) [euUonIpuo)
*SNUTULIS)

-0 oy jo wed Suryoe] duxiN

Juenw pagde)-yH JO uoneanoe
1010woxd e[TS[We)) Idpun punoidyoeq
[9/TALSD © UO PALAID A1oM S[eUITUR
oruagsuel], "woIsAs JJo-19, oyl

Sursn 901UI J[QIONPUT JO UOHLIAUAD)

SULIOJOST

109 JO YL, € 03 uowwos ¢z
uox? Suneep Aq pajerouad gyoguxin

PpunoIsydeq [9/T4LSD
© U0 PAJRIoUas 901 O OZUXIN

o1 Oy sno3Azorayey
PpajepIEA puE pajerouad Aferorounuo))

*g uo 109330 ON "puno1dydeq 9/14LSD
B Ul ZUXAN JO UOX? Is1y Sunapep
£q payeard 2ot Oy sno3Azowoy

PaJEpIEA PUE PRJEIoUaS AJ[BIOIOWIIO))

‘punoiIsyoeq
9/14.SD 2ind ur QY snoSAzowoy

‘punoidyoeq 9/T19LSD
1621 AS PHQAY ur O3 snogAzowoy

‘punoidyoeq

9/TALSD/6TTAS paxiur e

UO SUWLIOJOSI 0 JO UOXA JSII JO UOTIA[IP
£q 2ot Oy snoSAzowoy Sunerousn)

geuxan
gowen
[L9] Te ¥
Jruxin uosvpuy ‘[
[99] e 10
g ruxin epaueqey ‘Ol
groguN
[59]
DZUXIN ‘e 19 wog 6
DZUXIN [+9]

pup opuXiN e 19 _PYdRJ ‘Y

[€9]

oguxay  Te 19 YR ‘L

[09]

DruXLy  Te 10 uo)keID) ‘9

[L§]

oJuxAy e 19 U0y ‘S

[29] e 10
eaouepn( ‘f

[19]

“Te 19 SUoS ¢
[9¢]

‘Te 10 Sueyz g

DEUXIN/OZUXAN [¢s]
JOJUXAN T8 19 IO[SSIA “[

Inoiaeyog

Ananoe [esrojorsAydonoso/ondeuls

uonepIeA [PPON

oomu jo AUnqeIA

PUNOISNOLq/[OPOIA JO UONBIOUID)

urxarnau aum‘:w,ﬁ SAUAIRJY

"Inoraeyaq pue A3o7o1sAydonos[ ‘sioxrewr
ondeuAs jo siseq oy uo SurdKjousyd yim Suofe AfIqeIA pue uonepifeA ‘sd)is s)o3Ie) uoneinw se yons adA1ouad 11ay) Jo S[IeIdp SUIUIPNO S[OPOW ASNOUWL [/ UXN JUdLIND Jo ATewwunS | ajqel

SPRINGER NATURE



A. Tromp et al.

model has been validated showing the absence of mRNA
and protein levels from triple KO mice in the presence
of Cre.

The KO phenotype analysed between two inhibitory
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understand the pathologic role of both the human variants
and NRXNs in mental disorders.

Firstly, there is a need for further clarification on how
human variants impact the complex NRXN transcriptome.
From this review, we believe this could be a critical feature
of NRXN toxicity in patients, a result of haploinsufficiency
and selective transcriptomic abnormalities/changes which
the current mammalian models may not properly recapitu-
late. Indeed, most of the work conducted in vivo has
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neurodevelopmental disorders [78—80]; not only in patients
with rare variants as described here but also in non-carrier
patients following environmental stressors, such as drug
abuse [81-86]. The recent GWAS conducted on SCZ
patients also revealed genes acting directly on NRXN tran-
scriptomics, such as miR-137 which is predicted to directly
target NRXN isoforms [87, 88]. It is also worth noting that
all the variants have been reported to act through hap-
loinsufficiency. Taken together, these lines of evidence
point toward complex and selective transcriptomic changes,
presumably leading to partial-LOF and potentially coupled
to gain-of-function (GOF, by the generation of new aberrant
isoforms [80]), rather than complete-LOF as sought in
animal models. GOF may be an underestimated contribu-
tion to the toxicity of genetic variants in patients. Indeed,
although still poorly understood, genetic compensatory

mechanisms are now known to be able to trigger tran-
scriptomic alterations, such as exon skipping, use of cryptic
splicing sites and/or overexpression of homologues to res-
cue potential mutations [89-92]. Considering the apparent
splicing complexity and dynamics of NRXNs, these genes
are most likely very prone to such mechanisms. For
example, Flaherty et al. demonstrated that some hetero-
zygote NRXNla variants found in patients lead to (i) not
only a selective (non-homogeneous) reduction of the wild-
type isoforms but also to (ii) the generation of completely
novel isoforms [80]. Interestingly, overexpression of these
“de novo” isoforms decreased neuronal activity levels in
wild-type iPSC-neurons, suggesting a significant toxicity of
these mutant-transcripts. Similarly, it is also most likely that
changes in one NRXN transcriptome may directly impact the
expression and isoform diversity of the whole NRXN family

SPRINGER NATURE
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Fig. 3 Map of NRXN2 and
NRXN3 mutations. a NRXN2
mutations identified in ASD
patients. At the top is an
idiogram from the UCSC
genome browser [109] showing
chromosome 11q13.1 from hg38
assembly. The reference
transcripts of NRXN2a is
NM:015080.4 and f is
NM:138734.2 with exons and
the five splicing sites (orange
arrows) numbered on the top of
the gene. A single red box
represents a mutation in exon 12
and dashed lines represent
chromosomal spanning
deletions. TMR transmembrane
region, that is encoded by exon
23. b NRXN3 mutations
identified in ASD patients (red)
and controls (yellow); SCZ
patient mutations (red squares).
At the top is an idiogram from
the UCSC genome browser
[109] showing chromosome
14q24.3-q31.1 from hg38
assembly. The transcript IDs of
NRXN3a from Ensembl release
101 [110] is ENST634499.1 and
p is ENST428277.6 with exons
and the six splicing sites (orange
arrows) numbered on the top of
the gene. TMR transmembrane
region, that is encoded by exon
20. Non-coding sequences
(empty boxes), coding
sequences (filled boxes).
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Potential future directions

heterozygote variants of NRXNI may impact NRXN2 and

NRXN3 transcriptome patterns as well [90, 93]. For exam-
ple, some NRXNI-variants may produce non-sense mRNAs
that would be subjected to decay with the potential to
directly upregulate/disturb genes exhibiting sequence simi-
larity, such as NRXN2 and NRXN3 [90].

SPRINGER NATURE

To study the variants’ pathogenicity using animal models, it
may be beneficial to attempt to replicate the associated
human transcriptomic changes rather than aiming to study
the total-LOF condition and/or focusing on replicating the
human DNA mutations. Indeed, although the genomic
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organisation of NRXNs (including their major splicing sites,
Fig. 1) are very well conserved across vertebrates, there is
no guarantee that trying to replicate the human variants in
those organisms would trigger similar transcriptomic
changes and/or genetic compensatory mechanisms, such as
the generation of specific de novo isoforms. Currently, too
little is known about the complex NRXN neurodevelop-
mental transcriptional dynamics and about genetic com-
pensatory mechanisms in general. Learning more about the
normal and pathologic expression of this gene family might
then be key to help conceptualise novel research approaches
in the future. In this regard, further investigation into the
transcriptomic effects of the known causative variants

versus healthy carriers may represent a valuable approach.
As recently demonstrated, one could generate iPSCs from
patients to conduct in-depth transcriptomic studies on dif-
ferentiated cells [80]. These studies should not be limited to
the particular gene associated with the variant but to all
NRXNs, thereby enabling the monitoring/unveiling of
potential toxic genetic compensatory mechanisms. It would
be interesting to study all known variants and compare their
individual transcriptome fingerprints. Post-mortem brain
tissue could also be utilised to complement these studies. It
may also be informative to compare these data to (i) iPSCs
from healthy carriers and (ii) “wild-type” laboratory human
cell lines in which we would genetically replicate the
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variants, using genome editing technology such as CRISPR/
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Cas9 [98]) and relatively inexpensive transcriptomic
approaches to analyse/control their effects, there has never
been a better time to manipulate these genes in model
organisms. In parallel, considering the suspected hap-
ploinsufficient pathogenicity, one could deploy an RNAi
(RNA interference gene silencing) approach, in an effort to
target all NRXN isoforms simultaneously, avoiding the risk

1 excitatory neurons (day 100)

Two in vitro models—(1) hiPSCs from skin fibroblasts

hiPSC - neural progenitor cells, hiPSC - neurons and
differentiated into neural stem cells, (2) human

Seven control and six NRXN/a +/— hiPSCs
Neuroepithelial stem cells (NCS) differentiated to
Converted mutant embryonic stem (ES) cells into
embryonic stem cells. NRXN/ knockdown via

Table 2 Summary of hiPSC and ES based studies on NRXNI from ASD and SCZ patients outlining details of patient information, model generation, genotypes such as mutation sites and the
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[107] and (ii) the possible combined effect of mutations in
more than one NRXN homologue as exemplified in a
reported case of severe epilepsy with digenic mutations of
NRXNI and NRXN2 [108]. Observations such as these
further enrich our knowledge of the potential mechanisms
linking NRXN mutations to disease.
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