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Assigning functions to every gene in a living organism is the next
challenge for functional genomics. In fact, 85–90% of the 19,000
genes of the nematode Caenorhabditis elegans genome do not
produce any visible phenotype when inactivated, which hampers
determining their function, especially when they do not belong to
previously characterized gene families. We used 1H high-resolution
magic angle spinning NMR spectroscopy (1H HRMAS-NMR) to reveal
the latent phenotype associated to superoxide dismutase (sod-1) and
catalase (ctl-1) C. elegans mutations, both involved in the elimination
of radical oxidative species. These two silent mutations are signifi-
cantly discriminated from the wild-type strain and from each other.
We identify a metabotype significantly associated with these muta-
tions involving a general reduction of fatty acyl resonances from
triglycerides, unsaturated lipids being known targets of free radicals.
This work opens up perspectives for the use of 1H HRMAS-NMR as a
molecular phenotyping device for model organisms. Because it is
amenable to high throughput and is shown to be highly informative,
this approach may rapidly lead to a functional and integrated meta-
bonomic mapping of the C. elegans genome at the systems biology
level.

functional genomics � metabolic profiling � metabonomics �
nuclear magnetic resonance

Assigning functions to every gene in a living organism is the next
challenge for functional genomics. However, only a small

proportion of genes produce visible phenotypes when inactivated;
for example, only 10–15% of the 19,000 genes of the nematode
Caenorhabditis elegans produce a visible phenotype (1, 2). For the
remaining ones, determining their function is more difficult, espe-
cially when they do not belong to previously characterized gene
families.

For example, oxidative stress is a key, yet subtle, biological
process involved in aging, with long-term integration of many slow
processes leading to irreversible cellular and molecular damage.

Phenotyping plays a critical role in postgenomic sciences. Today,
a range of molecular phenotyping tools is available to characterize
mutations. Although gene expression and protein profiling are
predominantly used (3–5), metabonomic and metabolomic strate-
gies (6, 7) advantageously produce metabolic fingerprints that allow
identification of variations in low-molecular-weight compounds in
biofluids or organs in response to pathophysiological events (8),
drug treatments (9), or genetic polymorphisms (10). It is therefore
an attractive hypothesis-free approach for large-scale functional
genomics in model organisms (11).

Here we capitalize on recent developments in solid-state NMR
that allow the acquisition of highly resolved 1H spectra of metab-
olites from inhomogeneous materials such as biopsies (12) or food
(13). As shown below, when applying 1H high-resolution magic
angle spinning NMR spectroscopy (1H HRMAS-NMR), we pro-
vide complex metabolic phenotypes (6) or metabotypes (8) suitable
for discriminating between C. elegans oxidative stress mutants,
which cannot otherwise be distinguished phenotypically (14). In this

study, we develop, validate, and apply a strategy using 1H HRMAS-
NMR spectroscopy of whole-model organisms, in this case C.
elegans, to reveal the latent phenotypes associated with silent
mutations (11) in Metazoans, an approach already developed in
yeast and plants using mass spectrometry and liquid-state NMR
(15, 16). In particular, we investigate subtle metabolic disruptions
induced by mutations of oxidative stress enzymes. We show, as a
proof of concept of this strategy, a metabotype significantly asso-
ciated to oxidative stress mutants with otherwise no overt pheno-
types, i.e., silent mutations in the terminology of Oliver and
coworkers (11).

Results
1H HRMAS-NMR Reveals Metabolic Phenotypes for Both Morpholog-
ical and Invisible Mutations. To investigate the potential of meta-
bonomics to produce reliable metabolic phenotypes for C.
elegans, we first recorded 1H HRMAS-NMR spectra of three C.
elegans strains: a wild-type strain (N2), the collagen dpy-10(e128)
mutant, which displays a visible (morphological) phenotype, and
the sod-1(tm776) mutant, which has no overt phenotype.

Approximately 1,000 worms (Fig. 1a) were filled in a HRMAS-
NMR rotor and spun at 3.5 kHz for 1D 1H HRMAS-NMR
acquisition (Fig. 1b). Spectra were recorded for each sample [Fig.
1c; see supporting information (SI) Table 1 for assignment] and
bucketed with a 10�3-ppm resolution. We note that there is no
particular indication in these spectra (broadening or splitting) of
distributions of molecular environments within the sample. Super-
vised multivariate statistical modeling using partial least-squares
discriminant analysis (PLS-DA) shows a significant discrimination
of the three strains (Fig. 1d) and reveals strain-specific metabolic
features for dpy-10(e128) and more remarkably for sod-1(tm776)
(Fig. 1e). To validate discrimination of mutations, we resampled the
model under the null hypothesis by generating 999 random per-
mutations of the class vector. This shows that none of the random
models outperforms the initial model in terms of prediction
(Fig. 1f).

In this case the extent of metabolic variations in the spectra
illustrated in Fig. 1e are just as large for the invisible sod-1 mutant
as for the visible dpy-10 mutant. dpy-10 mutants are characterized
by higher glycerol levels; such elevation was previously shown to be
involved in the osmotic stress response of C. elegans (17) and is
compliant with similar observations in other model organisms.
These data clearly demonstrate the potential of 1H HRMAS-NMR
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to investigate metabolic changes induced by mutations, regardless
of the extent of the observable morphological phenotypes. If these
morphological and latent phenotypes are validated, this represents
a major step forward for functional genomic studies of C. elegans.

Statistical Support for Latent Metabolic Phenotypes. To address the
reproducibility and robustness of C. elegans latent metabolic phe-
notypes using 1H HRMAS-NMR, we then tested and controlled
several biological and technological factors that could potentially
affect the observed metabotype, namely the effects of strain [N2 vs.
sod-1(tm776)], age (L4 larvae vs. gravid adults), sample preparation
(MAS rotors lightly vs. heavily loaded), and the NMR analysis itself
(two acquisitions for each sample). A variance component model
assesses the relative contribution of each factor to the variance of
each of the 10,000 data points (Fig. 2), showing a baseline techno-
logical variation of �5–10% in regions with no NMR metabolic
signal and a biological variation up to 85% for age and 70% for the
mutation effect, mainly in the aliphatic region (�[0;4.6]). This 24 full
factorial design (involving 134 spectra from 67 samples) and
variance component analysis clearly show that biological variation
exceeds technological variation by nearly an order of magnitude.
This is also confirmed by low coefficients of variation (SI Fig. 4).

We then focused on the two biological factors assessed in this
analysis, i.e., the effect of mutation sod-1(tm776) and the effect of
age (SI Fig. 5). Because oxidative stress is a physiological process,
we need to evaluate potentially confounding physiological varia-
tions, such as age. The orthogonal partial least-square (OPLS) score
plots show a remarkable capacity for discrimination of both the
genetic component (SI Fig. 5a) and the age component (SI Fig. 5b),
and the loadings plots show metabotypes supporting these discrim-
inations. Discriminant metabolites are lower lipid resonances (�
0.90 CH3CH2CH2C � C; 1.16 CH3CH2CH2; 1.30 CH2CH2CH2CO
in fatty acyls; 1.41 CH2CH2CO; 1.59 CH2CH2C � C; 4.09 glyceryl
of lipids CH2OCOR; 5.33 unsaturated lipids � CHCH2CH2) and
higher trimethylamine-N-oxide (TMAO) (� 3.27) in sod-1(tm776)
compared with N2 worms (SI Table 2). This pattern corresponds to
strain discrimination regardless of age (L4 larvae and gravid
adults).

Further validation was realized by using the soft independent
modeling of class analogy (SIMCA) algorithm (18). SIMCA was
run for age and genetic discrimination. In both cases test sets [for
age, L4 larvae vs. gravid adults; for genetic, dpy-10(e128) vs. N2 and
sod-1(tm776)] are projected in the exclusion area, affirming the
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Fig. 1. 1H HRMAS-NMR analysis and supervised multivariate analysis of spectral data to probe metabolism of C. elegans oxidative stress mutants. Worms (a)
were filled into a 4-mm diameter HRMAS-NMR rotor and spun at a frequency of 3.5 kHz (b) to acquire 1H NMR spectra at 700 MHz (c). Under rotation at the
so-called magic angle, the various sources of NMR broadening, including the anisotropy of the magnetic susceptibility, dipolar interactions, and chemical shifts,
are averaged to their isotropic contribution to produce spectra with sharp resonances (28). Partial least-squares discriminant analysis (PLS-DA) was applied to
generate a model showing the variability between groups based on genetics (d), in which each point represents the projection of a HRMAS-NMR spectrum onto
the optimal discrimination plan. Metabolic patterns supporting the genetic discrimination are identified (e) for both morphological and nonmorphological
mutations. Each point in the pseudospectra represents the model coefficient associated with this region. Model validations ( f) were performed by resampling
the model 999 times under the null hypothesis H0 (i.e., generating null models with a randomly permuted YH0 not related to the factors of interest, genetics,
and age, such as in the original YH1). The decrease in model goodness-of-fit statistics R2 and Q2 as a function of the correlation between YH1 and YH0 shows that
none of the 999 randomly permuted models outperforms the initial model. R2 relates to the explained variance, i.e., the ability to describe data, whereas Q2

summarizes the predictive variance, i.e., the ability to predict correctly new data.
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efficiency of the model to discriminate nematode groups. There is
no overlap between the different groups, which confirms that the
oxidative stress and the age-related metabolic patterns are distinct
(SI Fig. 6).

These results confirm that age and genetic factors generate two
different patterns (SI Fig. 5 c and d), allowing NMR-based metabo-
typing to distinguish the subtle metabolic changes induced by
mutation of a key oxidative stress enzyme from that due to age.
They also validate the robustness of the latent metabolic phenotype
associated with sod-1 (homology between the loadings in Fig. 1c and
SI Fig. 5c).

Metabonomic Mapping of Oxidative Stress Genes Reveals Similar
Metabotypes. To assess whether this strategy generates biologically
relevant metabotypes that might qualify as candidate biomarkers,
we then compared the profiles of strains lacking consecutive
enzymes involved in oxygen dismutation (Fig. 3): sod-1(tm776) and
ctl-1(ok1242). ctl-1 encodes a catalase downstream of superoxide
dismutase in the detoxification pathway of reactive oxygen species
(ROS). PLS-DA shows a discrimination of N2, sod-1(tm776), and
ctl-1(ok1242) (Fig. 3a). sod-1(tm776) and ctl-1(ok1242) mutants are
both metabolically characterized by a reduction of lipids signals (�
0.90 CH3CH2CH2C � C; 1.30 CH2CH2CH2CO; 1.41 CH2CH2CO;
1.59 CH2CH2C � C; 5.33 unsaturated lipids � CHCH2CH2), as
confirmed by 2D NMR (Fig. 3b). In addition, ctl-1(ok1242) presents
an accumulation of glucose (� 3.92 CH2-C6; 4.63 �-anomeric H1;
5.23 �-anomeric H1), glycerate (� 3.84 CH2), and glycerol (� 3.56
CH2; 3.65 CH2) as presented in SI Table 3.

As a result, these observations show that our metabotyping
approach identifies close but distinct metabolic markers associated
with oxidative stress silent mutations. Our analysis strongly suggests
that oxidative stress caused by silent mutations is a distributed
process across the whole metabolic system, because we identified a
combination of several metabolites (a metabotype) predictive of
oxidative stress.

Discussion
Biological Relevance of Oxidative Stress Metabotypes. Different
hypotheses can be proposed to explain these metabolic patterns
(Fig. 3d): the reduction of lipid signals observed in both sod-
1(tm776) and ctl-1(ok1242) suggests that the lack of ROS

detoxification enzymes in these two strains leads to an elevation
of ROS. This is consistent with the fact that lipids are primary
targets of free radicals (19, 20). In this metabolic pattern
established for both the sod-1(tm776) and ctl-1(ok1242) mutants,
the reduction in lipids shows a new homeostatic equilibrium, in
which increased lipoperoxidation (denoted by CH2CH2CO al-
dehyde resonances at � 1.40 characteristic of some lipoperoxi-
dation products) is balanced by reduced availability of substrate
for free radical reactions. The increased amount of trimethyl-
amine-N-oxide, an osmolyte-stabilizing protein conformation
(21), could derive from the interplay between cellular oxidative
stress and osmotic stress (22). Interestingly, TMAO is a sym-
xenobiotic metabolite (23) (coprocessed by enterobacteria) that
was shown to be involved in insulin resistance in mammals (8).

Thus, in both mutants we observe a similar reduction of lipid
levels, consistent with a pathway-level signature. However, whereas
SOD is the only pathway transforming superoxide radicals to
hydrogen peroxide, in the absence of catalase, pathway redundancy
leaves the GSH peroxidase pathway for the elimination of hydrogen
peroxide (Fig. 3d). Because recycling of GSH is coupled to glucose
metabolism by NADPH/NADP� redox cycles, lack of catalase may
indirectly lead to an increase in glucose and its degradation
products (mainly glycerol and glycerate) (24) used to replenish
NADP�. As for the sod-1(tm776) case above, this rationale is fully
supported by the metabotypes we identify here for ctl-1(ok1242).

Mutations affecting consecutive enzymes in the same pathway
lead to similar (SI Fig. 7 a and c), albeit distinct (SI Fig. 7e),
metabotypes. Thus, not only does NMR analysis of the mutants
distinguish these latent phenotypes from others, it also provides a
clear picture of the subtle metabolic changes induced by silent
mutations, with both pathway-specific and mutation-specific
metabotypes.

Conclusions
Our results show that 1H HRMAS-NMR-based metabolic
profiling is a powerful and reliable approach providing both
metabolic fingerprints and metabolic phenotypes (metabo-
types) for both morphological and invisible mutations in
preparations of 1,000 worms, as well as fine mapping of
metabolic consequences of oxidative stress mutations of C.
elegans. A major advantage of the high-field 1H HRMAS
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methodology introduced here is the preservation of intracel-
lular integrity, which is particularly relevant to the study of the
intricate metabolic regulation linked to oxidative stress at the
systems level.

Our 1H HRMAS-NMR metabotyping approach presented here
is by no means limited to studying oxidative stress and should be
useful in the detailed metabolic characterization of C. elegans and
other model organisms in functional, chemical, and environmental
genomics, providing key molecular phenotypes between the ge-
nome and classical markers of health and disease.

Methods
Nematodes. The C. elegans strains used in this study were wild type
(N2), and mutant genotypes sod-1(tm776), ctl-1(ok1242), and dpy-
10(e128). Worms were raised at 15°C and fed well at all times. They

were fixed with 3.7% formaldehyde in M9 saline buffer during 30
min at room temperature, then washed three times with water. A
last wash was performed by using D2O to provide a field-frequency
lock signal for NMR experiments. A population of �1,000 worms
was then filled into a 4-mm HRMAS rotor with Kel-f inserts
restricting the effective sample volume to a 12-�l sphere. A speed
vacuum engine was used to remove D2O surplus, and NMR
acquisition was then performed on the same day.

1H HRMAS-NMR Spectroscopy. All NMR experiments were carried
out on a Bruker Avance spectrometer operating at 700 MHz, using
a standard double resonance (1H-13C) 4-mm HRMAS probe.
Standard HRMAS 1D nOe spectroscopy experiments (25) (recycle
delay–90°–�–90°–tm–90°–acquisition) were carried out on each sam-
ple. Water suppression was achieved by using low-power irradiation
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of the water resonance during the recycle delay of 1.7 s. The mixing
time, tm, was set to 100 ms. The 90° pulse length was adjusted to 5.3
�s, and � was adjusted to 4 �s. A total of 16,000 data points with
512 scans were acquired by using a spectral width of 8,503 Hz, for
a total acquisition time of �25 min. The magic angle spinning
frequency was set to 3.5 kHz, and the sample temperature was
regulated at 293 K. 1H chemical shifts were internally referenced to
the alanine CH3 doublet at � 1.48. All free induction decays were
multiplied by an exponential function equivalent to a 1-Hz line-
broadening factor before Fourier transformation.

For the purpose of assignment of the observed NMR spectral
resonances to various metabolites, a set of 2D 1H HRMAS corre-
lation experiments was carried out, as previously reported in the
literature (26), including 1H COSY, total correlation spectroscopy
(TOCSY), and J-resolved experiments. Heteronuclear single quan-
tum spectroscopy was used to reveal direct proton carbon connec-
tivities. TOCSY was run by using the DIPSI2 spin-lock scheme for
1H-1H transfers with a 90° pulse of 80 �s and a mixing time of 0.1 s.
For COSY, 2,048 t2 data points with 128 scans per increment and
300 t1 data points were acquired. For TOCSY, 2,048 t2 data points
with 128 scans per increment and 470 t1 data points were acquired.
The spectral width in both dimensions was 7,500 Hz for both COSY
and TOCSY experiments. For the J-resolved experiment, 4,096 t2
data points with 128 t1 data points were acquired. Spectral widths
were set to 7,500 Hz in F2 and 40 Hz in F1. Finally, HSQC was run
with 2,048 t2 data points with 432 scans for each of the 256 t1 data
points. Spectral widths were set to 7,500 Hz in F2 and 35,200 Hz in
F1. Total acquisition time was �36 h for COSY, 13 h for TOCSY,
24 h for the J-resolved experiment, and 67 h for HSQC. Assignment
was established from a Carr–Purcell–Meiboom–Gill (27) spin-echo
spectrum. The acquisition time was 8 min (256 scans). The spin–
spin relaxation delay (�–�–�) was set to 810 �s, and 200 loops were
performed before acquisition.

Data Import and Pattern Recognition. 1H HRMAS-NMR spectra
were phased by using the Topspin 1.3 interface. They were reduced
over the chemical shift range of �0.49 to 9.59 ppm with exclusion
areas around residual water signal (4.61–4.99 ppm) and its magic
angle spinning side band (�0.40 to �0.19 ppm), except for statis-
tical support analysis, using AMIX (Bruker) to 10,000 10�3-ppm
wide regions (buckets), and the signal intensity in each region was
integrated. Spectra were scaled to total intensity, and integration

was performed with the sum-of-intensities mode. The correspond-
ing buckets table was then exported to the software Simca-P 11
(Umetrics) for statistical analysis.

Multivariate Statistics. Principal component analyses (PCA) were
run to check the homogeneity of each subpopulation and eventually
exclude outliers. Data were then visualized by scores and loadings
plots. In scores plots, each point represents a NMR spectrum and
thus a sample. Loadings points stand for NMR spectral regions and
show intensity variations sustaining the distinction between sub-
populations.

OPLS analysis and PLS-DA were run to discriminate two
respectively three populations of nematodes by adding a supple-
mentary data matrix Y, containing information about genetic, age,
or technological factors. These methods allow a clearer distinction
between populations by canceling orthogonal information to the Y
matrix, which are of no use for this particular discrimination. As for
PCA, results were visualized by scores and loadings plots. Model
validations were performed by resampling the model 999 times
under the null hypothesis, meaning generating models with a
randomly permuted Y matrix not related to the factors of interest.
The decrease in model goodness-of-fit statistics R2 and Q2 as a
function of the correlation between the permuted and the original
Y matrix indicates the quality of the model.

The SIMCA algorithm was used to probe the prediction capacity
of the established models. The data set was divided in three. Two
of them are used as training sets to create a map. PCA of each group
was run to establish the limit of membership to each class. These
results are then organized on a 2D plan defining four areas. Upper
left and lower right are the area of membership to one of the
training set populations. Lower left is the region of membership to
the two populations. Finally, upper right may be understood as an
exclusion area, where no membership to the training set popula-
tions may be found. The last part of the data set is then used as a
test set. Every point (representing a spectrum) is projected on this
plan, and its membership to one of the training set populations is
validated by the position of this projection with respect to the
models’ limits.
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